Rutgers University: Algebra Written Qualifying Exam

 August 2018: Problem 5 SolutionExercise. Let G be a finite subgroup of the group of real $n \times n$ matrices with nonzero determinant such that all elements of G are symmetric matrices. Prove that G is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for some $k \geq 0$.

Solution.

A is symmetric if $A=A^{T}$.
Spectral Theorem for Symmetric Matrices: Let A be an $n \times n$ symmetric matrix over \mathbb{R}

- Every eigenvalue of A is real
- \exists diagonal matrix D and orthogonal matrix $\left(U^{T}=U^{-1}\right) U$ in $M_{n}(\mathbb{R})$ such that

$$
A=U D U^{T}=U D U^{-1}
$$

Aside

If G is a finite group and $g^{2}=1$ for all $g \in G$, then $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{k}$ for some k.
(a) If $g^{2}=1$ for all g then G is abelian

$$
\begin{array}{ll}
& (x y)^{2}=1=(x y)(x y)^{-1} \\
\Longrightarrow & x y x y=x y y^{-1} x^{-1} \\
\Longrightarrow & x y=y^{-1} x^{-1} \\
\Longrightarrow & x y=y x
\end{array}
$$

(b) Since G is abelian and the order of every (non-identity) element is 2 , we have $G \cong$ $(\mathbb{Z} / 2 \mathbb{Z})^{k}$

Let G be a finite subgroup of $G L_{n}(\mathbb{R})$ s.t. every $A \in G$ is symmetric. Let $A \in G$.
Since G is finite, A has finite order.
$\Longrightarrow A^{m}=I$ for some $m \geq 1$.
Show: $A^{2}=I$. Using Spectral theorem, decompose
$A=U D U^{-1}$ where diagonal entries of D are real and eigenvalues of A.
Since $A^{m}=I$ for some m, we have $\lambda^{m}=1$ for any eigen valye of A
\Longrightarrow the eigenvalues of A are all ± 1
$\Longrightarrow D$ is a diagonal matrix with diagonal entries ± 1. In particular, $D^{2}=0$.

$$
A^{2}=\left(U D U^{-1}\right)\left(U D U^{-1}\right)=U D^{2} U^{-1}=U I U^{-1}=I
$$

So, by the aside $G \cong(\mathbb{Z} / 2)^{k}$ for some $k \geq 0$.

