Rutgers University: Algebra Written Qualifying Exam August 2018: Problem 5 Solution

Exercise. Let G be a finite subgroup of the group of real $n \times n$ matrices with nonzero determinant such that all elements of G are symmetric matrices. Prove that G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^k$ for some $k \geq 0$.

Solution. A is symmetric if $A = A^T$. **Spectral Theorem for Symmetric Matrices:** Let A be an $n \times n$ symmetric matrix over \mathbb{R} • Every eigenvalue of A is real \exists diagonal matrix D and orthogonal matrix $(U^T = U^{-1}) U$ in $M_n(\mathbb{R})$ such that $A = UDU^T = UDU^{-1}$ If G is a finite group and $g^2 = 1$ for all $g \in G$, then $G \cong (\mathbb{Z}/2\mathbb{Z})^k$ for some k. (a) If $g^2 = 1$ for all g then G is abelian $(xy)^2 = 1 = (xy)(xy)^{-1}$ $xyxy = xyy^{-1}x^{-1}$ $xy = y^{-1}x^{-1}$ xy = yx(b) Since G is abelian and the order of every (non-identity) element is 2, we have $G \cong$ $(\mathbb{Z}/2\mathbb{Z})^k$ Let G be a finite subgroup of $GL_n(\mathbb{R})$ s.t. every $A \in G$ is symmetric. Let $A \in G$. Since G is finite, A has finite order. $\implies A^m = I \text{ for some } m \ge 1.$ **Show:** $A^2 = I$. Using Spectral theorem, decompose $A = UDU^{-1}$ where diagonal entries of D are real and eigenvalues of A. Since $A^m = I$ for some m, we have $\lambda^m = 1$ for any eigen value of A \implies the eigenvalues of A are all ± 1 $\implies D$ is a diagonal matrix with diagonal entries ± 1 . In particular, $D^2 = 0$. $A^{2} = (UDU^{-1})(UDU^{-1}) = UD^{2}U^{-1} = UIU^{-1} = I$ So, by the aside $G \cong (\mathbb{Z}/2)^k$ for some $k \ge 0$.